Ace the free response questions on your AP Precalculus exam with practice FRQs graded by Kai. Choose your subject below.
Knowt can make mistakes. Consider checking important information.
The best way to get better at FRQs is practice. Browse through dozens of practice AP Precalculus FRQs to get ready for the big day.
Analysis of a Rational Function with Quadratic Components
Analyze the rational function $$f(x)= \frac{x^2 - 9}{x^2 - 4*x + 3}$$ and determine its key features
Analyzing a Rational Function with Asymptotes
Consider the rational function $$R(x)= \frac{(x-2)(x+3)}{(x-1)(x+4)}$$. Answer each part that follow
Analyzing an Odd Polynomial Function
Consider the function $$p(x)= x^3 - 4*x$$. Investigate its properties by answering the following par
Analyzing End Behavior of Polynomial Functions
Consider the polynomial function $$P(x)= -2*x^4 + 3*x^3 - x + 5$$. Answer the following parts:
Average Rate of Change in a Quadratic Model
Let $$h(x)= x^2 - 4*x + 3$$ represent a model for a certain phenomenon. Calculate the average rate o
Average Rate of Change of a Rational Function
For the rational function $$r(x)= \frac{4*x}{x+2}$$, answer the following:
Break-even Analysis via Synthetic Division
A company’s cost model is represented by the polynomial function $$C(x) = x^3 - 6*x^2 + 11*x - 6$$,
Characterizing End Behavior and Asymptotes
A rational function modeling a population is given by $$R(x)=\frac{3*x^2+2*x-1}{x^2-4}$$. Analyze th
Comparative Analysis of Even and Odd Polynomial Functions
Consider the functions $$f(x)= x^4 - 4*x^2 + 3$$ and $$g(x)= x^3 - 2*x$$. Answer the following parts
Comparative Analysis of Polynomial and Rational Functions
A function is defined piecewise by $$ f(x)=\begin{cases} x^2-4 & \text{if } x\le2, \\ \frac{x^2-4}{x
Complex Zeros and Conjugate Pairs
Consider the polynomial $$p(x)= x^4 + 4*x^3 + 8*x^2 + 8*x + 4$$. Answer the following parts.
Composite Function Analysis in Environmental Modeling
Environmental data shows the concentration (in mg/L) of a pollutant over time (in hours) as given in
Composite Function Analysis with Rational and Polynomial Functions
Consider the functions $$f(x)= \frac{x+2}{x-1}$$ and $$g(x)= x^2 - 3*x + 4$$. Let the composite func
Constructing a Piecewise Function from Data
A company’s production cost function changes slopes at a production level of 100 units. The cost (in
Constructing a Rational Function from Graph Behavior
An unknown rational function has a graph with a vertical asymptote at $$x=3$$, a horizontal asymptot
Data Analysis with Polynomial Interpolation
A scientist measures the decay of a radioactive substance at different times. The following table sh
Degree Determination from Finite Differences
A researcher records the size of a bacterial colony at equal time intervals, obtaining the following
Determining Domain and Range from Graphical Data
A function is represented by a graph with certain open and closed endpoints. A table of select input
Determining the Degree of a Polynomial from Data
A table of values is given below for a function $$f(x)$$ measured at equally spaced x-values: | x |
Determining the Degree of a Polynomial via Differences
A function $$f(x)$$ is defined on equally spaced inputs and the following table gives selected value
Discontinuities in a Rational Model Function
Consider the function $$p(x)=\frac{(x-3)(x+1)}{x-3}$$, defined for all $$x$$ except when $$x=3$$. Ad
Discontinuity Analysis in a Rational Function with High Degree
Consider the function $$f(x)=\frac{x^3-8}{x^2-4}$$. Answer the following:
Engineering Curve Analysis: Concavity and Inflection
An engineering experiment recorded the deformation of a material, modeled by a function whose behavi
Exploring the Effect of Multiplicities on Graph Behavior
Consider the polynomial function $$q(x)= (x-1)^3*(x+2)^2$$.
Exponential Equations and Logarithm Applications in Decay Models
A radioactive substance decays according to the model $$A(t)= A_0*e^{-0.3*t}$$. A researcher analyze
Factoring and Dividing Polynomial Functions
Engineers are analyzing the stress on a structural beam, modeled by the polynomial function $$P(x)=
Factoring and Zero Multiplicity
Consider the polynomial $$p(x)= (x - 1)^2*(x+2)^3*(x-4)$$. Answer the following parts.
Function Model Construction from Data Set
A data set shows how a quantity V changes over time t as follows: | Time (t) | Value (V) | |-------
Function Transformations and Parent Functions
The parent function is $$f(x)= x^2$$. Consider the transformed function $$g(x)= -3*(x-4)^2 + 5$$. An
Geometric Series Model in Area Calculations
An architect designs a sequence of rectangles such that each rectangle's area is 0.8 times the area
Graph Interpretation and Log Transformation
An experiment records the reaction time R (in seconds) of an enzyme as a power function of substrate
Interpreting Transformations of Functions
The parent function is $$f(x)= x^2$$. A transformed function is given by $$g(x)= -3*(x+2)^2+5$$. Ans
Inverse Analysis of a Modified Rational Function
Consider the function $$f(x)=\frac{x^2+1}{x-1}$$. Answer the following questions concerning its inve
Inverse Analysis of an Even Function with Domain Restriction
Consider the function $$f(x)=x^2$$ defined on the restricted domain $$x \ge 0$$. Answer the followin
Inversion of a Polynomial Ratio Function
Consider the function $$f(x)=\frac{x^2-1}{x+2}$$. Answer the following questions regarding its inver
Investigating End Behavior of a Polynomial Function
Consider the polynomial function $$f(x)= -4*x^4+ x^3+ 2*x^2-7*x+1$$.
Linear Function Inverse Analysis
Consider the function $$f(x) = 2*x + 3$$. Answer the following questions concerning its inverse func
Marketing Analysis Using Piecewise Polynomial Function
A firm's sales function is modeled by $$ S(x)=\begin{cases} -x^2+6*x & \text{for } x\le3, \\ 2*x+3 &
Modeling a Real-World Scenario with a Rational Function
A biologist is studying the concentration of a nutrient in a lake. The concentration (in mg/L) is mo
Modeling with a Polynomial Function: Optimization
A company’s profit (in thousands of dollars) is modeled by the polynomial function $$P(x)= -2*x^3+12
Modeling with Rational Functions
A chemist models the concentration of a reactant over time with the rational function $$C(t)= \frac{
Optimizing Production Using a Polynomial Model
A factory's production cost (in thousands of dollars) is modeled by the function $$C(x)= 0.02*x^3 -
Parameter Identification in a Rational Function Model
A rational function modeling a certain phenomenon is given by $$r(x)= \frac{k*(x - 2)}{x+3}$$, where
Piecewise Financial Growth Model
A company’s quarterly growth rate is modeled using a piecewise function. For $$0 \le x \le 4$$, the
Piecewise Function without a Calculator
Let the function $$f(x)=\begin{cases} x^2-1 & \text{for } x<2, \\ \frac{x^2-4}{x-2} & \text{for } x\
Polynomial End Behavior and Zeros Analysis
A polynomial function is given by $$f(x)= 2*x^4 - 3*x^3 - 12*x^2$$. This function models a physical
Polynomial Interpolation and Curve Fitting
A set of three points, $$(1, 3)$$, $$(2, 8)$$, and $$(4, 20)$$, is known to lie on a quadratic funct
Polynomial Long Division and Slant Asymptote
Consider the rational function $$R(x)= \frac{2*x^3 - 3*x^2 + 4*x - 5}{x^2 - 1}$$. Answer the followi
Polynomial Model Construction and Interpretation
A company’s profit (in thousands of dollars) over time t (in months) is modeled by the quadratic fun
Polynomial Transformation Challenge
Consider the function transformation given by $$g(x)= -2*(x+1)^3 + 3$$. Answer each part that follow
Population Growth Modeling with a Polynomial Function
A regional population (in thousands) is modeled by a polynomial function $$P(t)$$, where $$t$$ repre
Product Revenue Rational Model
A company’s product revenue (in thousands of dollars) is modeled by the rational function $$R(x)= \f
Projectile Motion Analysis
A projectile is launched so that its height (in meters) as a function of time (in seconds) is given
Rational Function Analysis for Signal Processing
A signal processing system is modeled by the rational function $$R(x)= \frac{2*x^2 - 3*x - 5}{x^2 -
Rational Function and Slant Asymptote Analysis
A study of speed and fuel efficiency is modeled by the function $$F(x)= \frac{3*x^2+2*x+1}{x-1}$$, w
Rational Function: Machine Efficiency Ratios
A machine's efficiency is modeled by the rational function $$E(x) = \frac{x^2 - 9}{x^2 - 4*x + 3}$$,
Real-World Inverse Function: Modeling a Reaction Process
The function $$f(x)=\frac{50}{x+2}+3$$ models the average concentration (in moles per liter) of a su
Regression Model Selection for Experimental Data
Experimental data was collected, and the following table represents the relationship between a contr
Revenue Function Transformations
A company models its revenue with a polynomial function $$f(x)$$. It is known that $$f(x)$$ has x-in
Revenue Modeling with a Polynomial Function
A small theater's revenue from ticket sales is modeled by the polynomial function $$R(x)= -0.5*x^3 +
Roller Coaster Curve Analysis
A roller coaster's vertical profile is modeled by the polynomial function $$f(x)= -0.05*x^3 + 1.2*x^
Solving a Polynomial Inequality
Solve the inequality $$x^3 - 4*x^2 + x + 6 \ge 0$$ and justify your solution.
Solving a System of Equations: Polynomial vs. Rational
Consider the system of equations where $$f(x)= x^2 - 1$$ and $$g(x)= \frac{2*x}{x+2}$$. Answer the f
Solving Polynomial Inequalities
Consider the polynomial $$p(x)= x^3 - 5*x^2 + 6*x$$. Answer the following parts.
Transformation in Composite Functions
Let the parent function be $$f(x)= x^2$$ and consider the composite transformation given by $$g(x)=
Transformation of a Parabola
Starting with the parent function $$f(x)=x^2$$, a new function is defined by $$g(x) = -2*(x+3)^2 + 4
Trigonometric Function Analysis and Identity Verification
Consider the trigonometric function $$g(x)= 2*\tan(3*x-\frac{\pi}{4})$$, where $$x$$ is measured in
Use of Logarithms to Solve for Exponents in a Compound Interest Equation
An investment of $$1000$$ grows continuously according to the formula $$I(t)=1000*e^{r*t}$$ and doub
Zeros and Complex Conjugates in Polynomial Functions
A polynomial function of degree 4 is known to have real zeros at $$x=1$$ and $$x=-2$$, and two non-r
Zeros and End Behavior in a Higher-Degree Polynomial
Consider the polynomial $$P(x)= (x+1)^2 (x-2)^3 (x-5)$$. Answer the following parts.
Zeros and Factorization Analysis
A fourth-degree polynomial $$Q(x)$$ is known to have zeros at $$x=-3$$ (with multiplicity 2), $$x=1$
Analyzing a Logarithmic Function
Consider the logarithmic function $$f(x)= \log_{3}(x-2) + 1$$.
Arithmetic Sequence Analysis
Consider an arithmetic sequence with initial term $$a_0 = 5$$ and constant difference $$d$$. Given t
Arithmetic Sequence Analysis
An arithmetic sequence is defined as an ordered list of numbers with a constant difference between c
Arithmetic Sequence Derived from Logarithms
Consider the exponential function $$f(x) = 10 \cdot 2^x$$. A new dataset is formed by taking the com
Bacterial Population Growth Model
A certain bacterium population doubles every 3 hours. At time $$t = 0$$ hours the population is $$50
Base Transformation and End Behavior
Consider the functions \(f(x)=2^{x}\) and \(g(x)=5\cdot2^{(x+3)}-7\). (a) Express the function \(f(
Cell Division Pattern
A culture of cells undergoes division such that the number of cells doubles every hour. The initial
Comparing Exponential and Linear Growth in Business
A company is analyzing its revenue over several quarters. They suspect that part of the growth is li
Composite Function and Its Inverse
Let \(f(x)=3\cdot2^{x}\) and \(g(x)=x-1\). Consider the composite function \(h(x)=f(g(x))\). (a) Wr
Composite Functions and Their Inverses
For the functions $$f(x) = 2^x$$ and $$g(x) = \log_2(x)$$, analyze their composite functions.
Composite Functions Involving Exponential and Logarithmic Functions
Let $$f(x) = e^x$$ and $$g(x) = \ln(x)$$. Explore the compositions of these functions and their rela
Composition and Transformation Functions
Let $$g(x)= \log_{5}(x)$$ and $$h(x)= 5^x - 4$$.
Composition of Exponential and Log Functions
Consider the functions $$f(x)=\ln(x)$$ and $$g(x)=2*e^(x)$$.
Composition of Exponential and Logarithmic Functions
Given two functions: $$f(x) = 3 \cdot 2^x$$ and $$g(x) = \log_2(x)$$, answer the following parts.
Compound Interest and Continuous Growth
A bank account grows continuously according to the formula $$A(t) = P\cdot e^{rt}$$, where $$P$$ is
Compound Interest vs. Simple Interest
A financial analyst is comparing two interest methods on an initial deposit of $$10000$$ dollars. On
Determining an Exponential Model from Data
An outbreak of a virus produced the following data: | Time (days) | Infected Count | |-------------
Earthquake Intensity and Logarithmic Function
The Richter scale measures earthquake intensity using a logarithmic function. Suppose the energy rel
Economic Inflation Model Analysis
An economist proposes a model for the inflation rate given by R(t) = A · ln(B*t + C) + D, where R(t)
Experimental Data Modeling Using Semi-Log Plots
A set of experimental data regarding chemical concentration is given in the table below. The concent
Exploring Logarithmic Scales: pH and Hydrogen Ion Concentration
In chemistry, the pH of a solution is defined by the relation $$pH = -\log([H^+])$$, where $$[H^+]$$
Exponential Function Transformations
Given the exponential function f(x) = 4ˣ, describe the transformation that produces the function g(x
Exponential Growth from Percentage Increase
A process increases by 8% per unit time. Write an exponential function that models this growth.
Exponential Inequalities
Solve the inequality $$3 \cdot 2^x \le 48$$.
Finding Terms in a Geometric Sequence
A geometric sequence is known to satisfy $$g_3=16$$ and $$g_7=256$$.
Geometric Investment Growth
An investor places $$1000$$ dollars into an account that grows following a geometric sequence model.
Geometric Sequence and Exponential Modeling
A geometric sequence can be viewed as an exponential function defined by a constant ratio. The table
Geometric Sequence Construction
Consider a geometric sequence where the first term is $$g_0 = 3$$ and the second term is $$g_1 = 6$$
Graphical Analysis of Inverse Functions
Given the exponential function f(x) = 2ˣ + 3, analyze its inverse function.
Inverse Function of an Exponential Function
Consider the function $$f(x)= 3\cdot 2^x + 4$$.
Inverse Functions in Exponential Contexts
Consider the function $$f(x)= 5^x + 3$$. Analyze its inverse function.
Inverse Relationship Verification
Given f(x) = 3ˣ - 4 and g(x) = log₃(x + 4), verify that g is the inverse of f.
Investment Growth via Sequences
A financial planner is analyzing two different investment strategies starting with an initial deposi
Log-Exponential Function and Its Inverse
For the function $$f(x)=\log_2(3^(x)-5)$$, determine the domain, prove it is one-to-one, find its in
Logarithmic Equation and Extraneous Solutions
Solve the logarithmic equation $$log₂(x - 1) + log₂(3*x + 2) = 3$$.
Logarithmic Function and Its Inverse
Let $$f(x)=\log_5(2x+3)-1$$. Analyze the function's one-to-one property and determine its inverse, i
Logarithmic Function and Properties
Consider the logarithmic function $$g(x) = \log_3(x)$$ and analyze its properties.
Logarithmic Function with Scaling and Inverse
Consider the function $$f(x)=\frac{1}{2}\log_{10}(x+4)+3$$. Analyze its monotonicity, find the inver
Model Validation and Error Analysis in Exponential Trends
During a chemical reaction, a set of experimental data appears to follow an exponential trend when p
Natural Logarithms in Continuous Growth
A population grows continuously according to the function $$P(t) = P_0e^{kt}$$. At \(t = 0\), \(P(0)
pH and Logarithmic Functions
The pH of a solution is defined by $$pH = -\log_{10}[H^+]$$, where $$[H^+]$$ represents the hydrogen
pH Measurement and Inversion
A researcher uses the function $$f(x)=-\log_{10}(x)+7$$ to measure the pH of a solution, where $$x$$
Piecewise Exponential and Logarithmic Function Discontinuities
Consider the function defined by $$ f(x)=\begin{cases} 2^x + 1, & x < 3,\\ 5, & x = 3,
Population Growth Inversion
A town's population grows according to the function $$f(t)=1200*(1.05)^(t)$$, where $$t$$ is the tim
Population Growth Modeling with Exponential Functions
A small town has its population recorded every 5 years, as shown in the table below: | Year | Popul
Profit Growth with Combined Models
A company's profit is modeled by a function that combines an arithmetic increase with exponential gr
Radioactive Decay Analysis
A radioactive substance decays exponentially over time according to the function $$f(t) = a * b^t$$,
Radioactive Decay and Half-Life Estimation Through Data
A radioactive substance decays exponentially according to the function $$f(t)= a * b^t$$. The follow
Radioactive Decay Problem
A radioactive substance decays exponentially with a half-life of 5 years and an initial mass of $$20
Savings Account Growth: Arithmetic vs Geometric Sequences
An individual opens a savings account that incorporates both regular deposits and interest earnings.
Shifted Exponential Function Analysis
Consider the exponential function $$f(x) = 4e^x$$. A transformed function is defined by $$g(x) = 4e^
Solving Exponential Equations Using Logarithms
Solve for $$x$$ in the exponential equation $$2*3^(x)=54$$.
System of Exponential Equations
Solve the following system of equations: $$2\cdot 2^x + 3\cdot 3^y = 17$$ $$2^x - 3^y = 1$$.
Temperature Cooling Model
An object cooling in a room follows Newton’s Law of Cooling. The temperature of the object is modele
Temperature Decay Modeled by a Logarithmic Function
In an experiment, the temperature (in degrees Celsius) of an object decreases over time according to
Transformation Effects on Exponential Functions
Consider the function $$f(x) = 3 \cdot 2^x$$, which is transformed to $$g(x) = 3 \cdot 2^{(x+1)} - 4
Transformation of an Exponential Function
Consider the basic exponential function $$f(x)= 2^x$$. A transformed function is given by $$g(x)= 3\
Transformations in Logarithmic Functions
Given \(f(x)=\log_{3}(x)\), consider the transformed function \(g(x)=-2\log_{3}(2x-6)+4\). (a) Dete
Transformations of Exponential Functions
Consider the exponential function $$f(x) = 3 \cdot 2^x$$. This function is transformed to produce $$
Transformations of Exponential Functions
Consider the base exponential function $$f(x)= 3 \cdot 2^x$$. A transformed function is defined by
Transformed Exponential Equation
Solve the exponential equation $$5 \cdot (1.2)^{(x-3)} = 20$$.
Translated Exponential Function and Its Inverse
Consider the function $$f(x)=5*2^(x+3)-8$$. Analyze its properties by confirming its one-to-one natu
Tumor Growth with Time Dilation Effects
A medical researcher is studying the growth of a tumor, which is modeled by the exponential function
Using Exponential Product Property in Function Analysis
Consider the function $$f(x)= 3^x * 2^{2x}.$$
Analysis of a Bridge Suspension Vibration Pattern
After an impact, engineers recorded the vertical displacement (in meters) of a suspension bridge, mo
Analysis of a Limacon
Consider the polar function $$r(\theta) = 2 + 3*\cos(\theta)$$.
Analysis of Rose Curves
A polar curve is given by the equation $$r=4*\cos(3*θ)$$ which represents a rose curve. Analyze the
Average Rate of Change in a Polar Function
Consider the polar function $$r=f(θ)=3+2*\sin(θ)$$, which models a periodic phenomenon in polar coor
Calculating the Area Enclosed by a Polar Curve
Consider the polar curve $$r=2*\cos(θ)$$. Without performing any integral calculations, use symmetry
Comparing Sinusoidal Function Models
Two models for daily illumination intensity are given by: $$I_1(t)=6*\sin\left(\frac{\pi}{12}(t-4)\r
Concavity in the Sine Function
Consider the function $$h(x) = \sin(x)$$ defined on the interval $$[0, 2\pi]$$.
Conversion Between Rectangular and Polar Coordinates
Convert the given points between rectangular and polar coordinate systems and discuss the relationsh
Coordinate Conversion
Convert the point $$(-\sqrt{3}, 1)$$ from rectangular coordinates to polar coordinates, and then con
Coterminal Angles and the Unit Circle
Consider the angle $$\theta = \frac{5\pi}{3}$$ given in standard position.
Coterminal Angles and Unit Circle Analysis
Identify coterminal angles and determine the corresponding coordinates on the unit circle.
Damped Oscillations: Combining Sinusoidal Functions and Geometric Sequences
A mass-spring system oscillates with decreasing amplitude following a geometric sequence. Its displa
Daylight Variation Model
A company models the variation in daylight hours over a year using the function $$D(t) = 10*\sin\Big
Determining Phase Shifts and Amplitude Changes
A wave function is modeled by $$W(\theta)=7*\cos(4*(\theta-c))+d$$, where c and d are unknown consta
Equivalent Representations Using Pythagorean Identity
Using trigonometric identities, answer the following:
Exploring Inverse Trigonometric Functions
Consider the inverse sine function $$\arcsin(x)$$, defined for \(x\in[-1,1]\).
Graph Analysis of a Polar Function
The polar function $$r=4+3\sin(\theta)$$ is given, with the following data: | \(\theta\) (radians)
Graph Interpretation from Tabulated Periodic Data
A study recorded the oscillation of a pendulum over time. Data is provided in the table below showin
Graph Transformations: Sine and Cosine Functions
The functions $$f(\theta)=\sin(\theta)$$ and $$g(\theta)=\cos(\theta)$$ are related through a phase
Graphing a Limacon
Given the polar equation $$r=2+3*\cos(\theta)$$, analyze and graph the corresponding limacon.
Graphing the Tangent Function with Asymptotes
Consider the transformed tangent function $$g(\theta)=\tan(\theta-\frac{\pi}{4})$$.
Interpreting a Sinusoidal Graph
The graph provided displays a function of the form $$g(\theta)=a\sin[b(\theta-c)]+d$$. Use the graph
Limacons and Cardioids
Consider the polar function $$r=1+2*\cos(\theta)$$.
Modeling Daylight Hours with a Sinusoidal Function
A city's daylight hours vary seasonally and are modeled by $$D(t)=11+1.5\sin\left(\frac{2\pi}{365}(t
Modeling Daylight Hours with a Sinusoidal Function
A study in a northern city recorded the number of daylight hours over the course of one year. The ob
Modeling Daylight Variation
A coastal city records its daylight hours over the year. A sinusoidal model of the form $$D(t)=A*\si
Multiple Angle Equation
Solve the trigonometric equation $$2*\sin(2x) - \sqrt{3} = 0$$ for all $$x$$ in the interval $$[0, 2
Periodic Phenomena: Seasonal Daylight Variation
A scientist is studying the variation in daylight hours over the course of a year in a northern regi
Phase Shift and Frequency Analysis
Analyze the function $$f(x)=\cos\Bigl(4\bigl(x-\frac{\pi}{8}\bigr)\Bigr)$$.
Probability and Trigonometry: Dartboard Game
A circular dartboard is divided into three regions by drawing two radii, forming sectors. One region
Rate of Change in Polar Functions
For the polar function $$r(\theta)=4+\cos(\theta)$$, investigate its rate of change.
Rate of Change in Polar Functions
Consider the polar function $$r(\theta)=3+\sin(\theta)$$.
Reciprocal and Pythagorean Identities
Verify the identity $$1+\cot^2(x)=\csc^2(x)$$ and use it to solve the related trigonometric equation
Rose Curve in Polar Coordinates
The polar function $$r(\theta) = 4*\cos(3*\theta)$$ represents a rose curve.
Roses and Limacons in Polar Graphs
Consider the polar curves described below and answer the following:
Sinusoidal Function and Its Inverse
Consider the function $$f(x)=2*\sin(x)+1$$ defined on the restricted domain $$\left[-\frac{\pi}{2},\
Solving a System Involving Exponential and Trigonometric Functions
Consider the system of equations: $$ \begin{aligned} f(x)&=e^{-x}+\sin(x)=1, \\ g(x)&=\ln(2-x)+\co
Solving a Trigonometric Equation
Solve the trigonometric equation $$2*\sin(\theta)+\sqrt{3}=0$$ for all solutions in the interval $$[
Solving Trigonometric Equations in a Specified Interval
Solve the given trigonometric equations within specified intervals and explain the underlying reason
Special Triangles and Unit Circle Coordinates
Consider the actual geometric constructions of the special triangles used within the unit circle, sp
Tangent Function and Asymptotes
Examine the function $$f(\theta)=\tan(\theta)$$ defined on the interval $$\left(-\frac{\pi}{2}, \fra
Tidal Patterns and Sinusoidal Modeling
A coastal engineer models tide heights (in meters) as a function of time (in hours) using the sinuso
Tidal Patterns and Sinusoidal Modeling
A coastal area experiences tides that follow a sinusoidal pattern described by $$T(t)=4+1.2\sin\left
Transformation and Reflection of a Cosine Function
Consider the function $$g(x) = -2*\cos\Bigl(\frac{1}{2}(x + \pi)\Bigr) + 3$$.
Transformations of Inverse Trigonometric Functions
Analyze the inverse trigonometric function $$g(x)=\arccos(x)$$ and its transformation into $$h(x)=2-
Verification and Application of Trigonometric Identities
Consider the sine addition identity $$\sin(\alpha+\beta)=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\b
Vibration Analysis
A mechanical system oscillates with displacement given by $$d(t) = 5*\cos(4t - \frac{\pi}{3})$$ (in
Acceleration in a Vector-Valued Function
Given the particle's position vector $$\mathbf{r}(t) = \langle t^2, t^3 - 3*t \rangle$$, answer the
Advanced Matrix Modeling in Economic Transitions
An economic model is represented by a 3×3 transition matrix $$M=\begin{pmatrix}0.5 & 0.2 & 0.3\\0.1
Analysis of a Particle's Parametric Path
A particle moves in the plane with parametric equations $$x(t)=t^2 - 3*t + 2$$ and $$y(t)=4*t - t^2$
Analysis of a Vector-Valued Position Function
Consider the vector-valued function $$\mathbf{p}(t) = \langle 2*t + 1, 3*t - 2 \rangle$$ representin
Analyzing a Piecewise Function Representing a Linear Transformation
Let $$T(x)=\begin{cases} \frac{2x-4}{x-2} & \text{if } x \neq 2, \\ 3 & \text{if } x=2 \end{cases}$$
Average Rate of Change in Parametric Motion
A projectile is launched and its motion is modeled by $$x(t)=3*t+1$$ and $$y(t)=16-4*t^2$$, where $$
Circular Motion and Transformation
The motion of a particle is given by the parametric equations $$x(t)=3\cos(t)$$ and $$y(t)=3\sin(t)$
Complex Parametric and Matrix Analysis in Planar Motion
A particle moves in the plane according to the parametric equations $$x(t)=3\cos(t)+2*t$$ and $$y(t)
Composite Transformations in the Plane
Consider two linear transformations in $$\mathbb{R}^2$$: a rotation by 90° counterclockwise and a re
Composition of Linear Transformations
Consider two linear transformations represented by the matrices $$A= \begin{pmatrix} 1 & 2 \\ 0 & 1
Composition of Transformations and Inverses
Let $$A=\begin{bmatrix}2 & 3\\ 1 & 4\end{bmatrix}$$ and consider the linear transformation $$L(\vec{
Computing Average Rate of Change in Parametric Functions
Consider a particle moving with its position given by $$x(t)=t^2 - 4*t + 3$$ and $$y(t)=2*t + 1$$. A
Determinant Applications in Area Computation
Vectors $$\mathbf{u}=\langle 5,2\rangle$$ and $$\mathbf{v}=\langle 1,4\rangle$$ form adjacent sides
Discontinuity Analysis in an Implicitly Defined Function
Consider the circle defined by $$x^2+y^2=4$$. A piecewise function for $$y$$ is attempted as $$y(x)=
Discontinuity in a Function Modeling Transition between States
A system's state is modeled by the function $$S(x)=\begin{cases} \frac{x^2-16}{x-4} & \text{if } x \
Estimating a Definite Integral with a Table
The function x(t) represents the distance traveled (in meters) by an object over time, with the foll
Evaluating a Piecewise Function in a Vector Context
A vector-valued function is defined as $$\mathbf{p}(t)=\langle p_x(t),p_y(t) \rangle$$ where the hor
Evaluating Limits and Discontinuities in a Parameter-Dependent Function
For the function $$g(t)=\begin{cases} \frac{2*t^2 - 8}{t-2} & \text{if } t \neq 2, \\ 6 & \text{if }
Evaluating Limits in a Parametrically Defined Motion Scenario
A particle’s motion is given by the parametric equations: $$x(t)=\begin{cases} \frac{t^2-9}{t-3} & \
Ferris Wheel Motion
A Ferris wheel rotates counterclockwise with a center at $$ (2, 3) $$ and a radius of $$5$$. The whe
FRQ 4: Parametric Representation of a Parabola
The parabola given by $$y=(x-1)^2-2$$ can be represented parametrically as $$ (x(t), y(t)) = (t, (t-
FRQ 8: Vector Analysis - Dot Product and Angle
Given the vectors $$\textbf{u}=\langle3,4\rangle$$ and $$\textbf{v}=\langle-2,5\rangle$$, analyze th
FRQ 10: Unit Vectors and Direction
Consider the vector $$\textbf{w}=\langle -5, 12 \rangle$$.
FRQ 11: Matrix Inversion and Determinants
Let matrix $$A=\begin{bmatrix}3 & 4\\2 & -1\end{bmatrix}$$.
FRQ 13: Area Determined by a Matrix's Determinant
Vectors $$\textbf{v}=\langle4,3\rangle$$ and $$\textbf{w}=\langle-2,5\rangle$$ form a parallelogram.
FRQ 15: Composition of Linear Transformations
Consider two linear transformations represented by the matrices $$A=\begin{bmatrix}2 & 0\\1 & 3\end{
FRQ 17: Matrix Representation of a Reflection
A reflection about the line \(y=x\) is given by the matrix $$Q=\begin{bmatrix}0 & 1\\1 & 0\end{bmatr
Graphical and Algebraic Analysis of a Function with a Removable Discontinuity
Consider the function $$g(x)=\begin{cases} \frac{\sin(x) - \sin(0)}{x-0} & \text{if } x \neq 0, \\ 1
Implicit Function Analysis
Consider the implicitly defined equation $$x^2 + y^2 - 4*x + 6*y - 12 = 0$$. Answer the following:
Implicitly Defined Circle
Consider the implicitly defined function given by $$x^2+y^2=16$$, which represents a circle.
Inverse Analysis of a Quadratic Function
Consider the function $$f(x)=x^2-4$$ defined for $$x\geq0$$. Analyze the function and its inverse.
Inverse Function and Transformation Mapping
Given the function $$f(x)=\frac{x+2}{3}$$, analyze its invertibility and the relationship between th
Inverse Matrix and Transformation of the Unit Square
Given the transformation matrix $$A=\begin{pmatrix}3 & 1 \\ 2 & 2\end{pmatrix}$$ applied to the unit
Inverse Matrix with a Parameter
Consider the 2×2 matrix $$A=\begin{pmatrix} a & 2 \\ 3 & 4 \end{pmatrix}.$$ (a) Express the deter
Inverse of a 2×2 Matrix
Consider the matrix $$A=\begin{bmatrix}2 & 5\\ 3 & 7\end{bmatrix}$$.
Inverses and Solving a Matrix Equation
Given the matrix $$D = \begin{pmatrix} -2 & 5 \\ 1 & 3 \end{pmatrix}$$, answer the following:
Linear Transformation Composition
Consider two linear transformations with matrices $$A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
Linear Transformation Evaluation
Given the transformation matrix $$T = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$$, answer the fo
Linear Transformations via Matrices
A linear transformation \(L\) in \(\mathbb{R}^2\) is defined by $$L(x,y)=(3*x- y, 2*x+4*y)$$. This t
Matrix Modeling in Population Dynamics
A biologist is studying a species with two age classes: juveniles and adults. The population dynamic
Matrix Modeling of Department Transitions
A company’s employee transitions between two departments are modeled by the matrix $$M=\begin{pmatri
Matrix Multiplication and Non-Commutativity
Let the matrices be defined as $$A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$ and $$B=\begin{pma
Matrix Transformation of a Vector
Let the transformation matrix be $$A=\begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix},$$ and let the
Modeling Linear Motion Using Parametric Equations
A car travels along a straight road. Its position in the plane is given by the parametric equations
Parametric Equations of an Ellipse
Consider the ellipse defined by $$\frac{x^2}{9} + \frac{y^2}{4} = 1$$. Answer the following:
Parametric Representation of a Line: Motion of a Car
A car travels in a straight line from point A = (2, -1) to point B = (10, 7) at a constant speed. (
Parametric Representation of an Implicit Curve
The equation $$x^2+y^2-6*x+8*y+9=0$$ defines a curve in the plane. Analyze this curve.
Parametric Representation on the Unit Circle and Special Angles
Consider the unit circle defined by the parametric equations $$x(t)=\cos(t)$$ and $$y(t)=\sin(t)$$.
Parametrically Defined Circular Motion
A circle of radius 5 is modeled by the parametric equations $$x(t)= 5\cos(t)$$ and $$y(t)= 5\sin(t)$
Parametrization of a Parabola
Given the explicit function $$y = 2*x^2 + 3*x - 1$$, answer the following:
Parametrization of an Ellipse for a Racetrack
A racetrack is shaped like the ellipse given by $$\frac{(x-1)^2}{16}+\frac{(y+2)^2}{9}=1$$.
Parametrizing a Linear Path: Car Motion
A car moves along a straight line from point $$A=(1,2)$$ to point $$B=(7,8)$$.
Parametrizing a Parabola
A parabola is defined parametrically by $$x(t)=t$$ and $$y(t)=t^2$$.
Particle Motion with Quadratic Parametric Functions
A particle moves in the plane according to the parametric equations $$x(t)=t^2$$ and $$y(t)=2*t$$. A
Planar Motion Analysis
A particle moves in the plane with parametric functions $$x(t)= 3*t - t^2$$ and $$y(t)= 4*t - 2*t^2$
Position and Velocity in Vector-Valued Functions
A particle’s position is defined by the vector-valued function $$\vec{p}(t)=(2*t+1)\,\mathbf{i}+(3*t
Properties of a Parametric Curve
Consider a curve defined parametrically by $$x(t)=t^3$$ and $$y(t)=t^2.$$ (a) Determine for which
Rate of Change Analysis in Parametric Motion
A particle’s movement is described by the parametric equations $$x(t)=t^3-6*t+4$$ and $$y(t)=2*t^2-t
Rotation of a Force Vector
A force vector is given by \(\vec{F}= \langle 10, 5 \rangle\). This force is rotated by 30° counterc
Transition Matrix in Markov Chains
A system transitions between two states according to the matrix $$M= \begin{pmatrix} 0.7 & 0.3 \\ 0.
Vector Addition and Scalar Multiplication
Consider the vectors $$\vec{u}=\langle 1, 3 \rangle$$ and $$\vec{v}=\langle -2, 4 \rangle$$:
Vector Analysis in Projectile Motion
A soccer ball is kicked so that its velocity vector is given by $$\mathbf{v}=\langle5, 7\rangle$$ (i
Vector Components and Magnitude
Given the vector $$\vec{v}=\langle 3, -4 \rangle$$:
Vector Operations in the Plane
Let $$\vec{u}= \langle 3, -2 \rangle$$ and $$\vec{v}= \langle -1, 4 \rangle$$. Perform the following
Vector Operations in the Plane
Let the vectors be given by $$\mathbf{u}=\langle 3,-4\rangle$$ and $$\mathbf{v}=\langle -2,5\rangle$
Vector Scalar Multiplication
Given the vector $$\mathbf{w} = \langle -2, 5 \rangle$$ and the scalar $$k = -3$$, answer the follow
Vector-Valued Functions: Position and Velocity
A particle’s position is given by the vector-valued function $$\mathbf{p}(t)=\langle 2*t+1, t^2-3*t+
Vectors in Polar and Cartesian Coordinates
A drone's position is described in polar coordinates by $$r(t)=5+t$$ and $$\theta(t)=\frac{\pi}{6}t$
Everyone is relying on Knowt, and we never let them down.
We have over 5 million resources across various exams, and subjects to refer to at any point.
We’ve found the best flashcards & notes on Knowt.